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Higher-order neural networks, Polyà polynomials, and Fermi cluster diagrams
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The problem of controlling higher-order interactions in neural networks is addressed with techniques com-
monly applied in the cluster analysis of quantum many-particle systems. For multineuron synaptic weights
chosen according to a straightforward extension of the standard Hebbian learning rule, we show that higher-
order contributions to the stimulus felt by a given neuron can be readily evaluated via Polya`’s combinatoric
group-theoretical approach or equivalently by exploiting a precise formal analogy with fermion diagrammatics.
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In attempting to unravel the mechanisms of informati
processing and attendant adaptive behavior in neurobiol
cal systems, considerable attention is currently being
rected to nonlinear processing in dendritic trees and to
computational power that can be gained from multiplicat
or higher-order interactions between neurons@1,2#. This fo-
cus is supported by a large body of theoretical work dem
strating enhanced performance in artificial neural netwo
involving such higher-order or multineuron interactions,
applied to a variety of information-processing tasks, m
notably memory storage, and recall Refs.@3–13#. Introduc-
tion of higher-order couplings is accompanied, however,
the threat of a combinatoric explosion that may strongly
hibit analysis, evaluation, and optimization. In this note
expose some simple techniques based on group-theo
symmetry arguments that serve, in some cases, to reduc
severity of these problems and give access to the advant
of higher-order networks for problem domains involvin
complex correlations. Our study is guided by interesting p
allels with the diagrammatic analysis of fermion clusters
many-body physics.

We consider the following simple but standard model o
higher-order neural network. The network consists ofN
binary-output hard-threshold units~model neurons! i whose
state variabless i take the value11 if the unit is active
~‘‘firing’’ ! and 21 if the unit is inactive~‘‘not firing’’ !.
Model neuroni receives inputs from exactlyKi other units of
the network, with self-interactions excluded so that 1<Ki
<N21. A given neuron updates its state on a discrete t
grid according to the deterministic threshold rule

s i~ t11!5sgn@hi~ t !#, i 51, . . . ,N. ~1!

Here hi(t) is the net stimulus felt by the neuron at timet,
coming from internal and external inputs but reduced b
threshold parameter. For our purposes it is immate
whether sequential or parallel updating is imposed. The g
eral higher-order synaptic structure of the network mode
expressed in the assumed form
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hi~ t !5ci0~ t !1(
j 1

ci j 1
~ t !s j 1

11(
j 1 j 2

ci j 1 j 2
~ t !s j 1

~ t !s j 2
~ t !

1•••1 (
j 1, j 2,•••, j Ki

ci j 1 j 2 . . . j Ki
~ t !s j 1

~ t !

3s j 2
~ t !•••s j Ki

~ t !

5C0~ t !1C1~ t !1C2~ t !1•••1CKi
~ t !, ~2!

where the sums include only thoseKi neurons from which
neuroni receives inputs. The first term represents any ex
nal input to neuroni ~reduced by its threshold!, while the
second term is the usual one representing binary interacti
a simple linear sum of states of input neurons weighted
synaptic strengthsci j 1

. The higher-order terms in the expan

sion, forn>2, represent ‘‘multiplicative’’ interactions in tha
they are linear combinations of theproductsof two or more
input-neuron states. One also speaks of a ‘‘sum-of-produ
form for such interactions.

We observe that the generalnth-order contribution

Cn5 (
j 1, j 2•••, j n

ci j 1 j 2••• j n
s j 1

s j 2
•••s j n

, ~3!

representing the irreducible interaction ofn neurons with
neuron i, introduces (n

Ki)5Ki !/n!(Ki2n)! weight param-
eters. Accordingly, specification of the net stimulus~2! re-
quires 2Ki parameters. The exponential explosion of para
eters with increasing connectivityKi has deterred
widespread application of higher-order networks, in spite
their theoretical advantages.

Indeed, complete optimization of a network having
possible combinations of higher-order terms is patently
practical for sizable values ofKi typically needed in real-
world applications. However, a restricted optimization pro
lem has been attacked by retaining only a strongly redu
pattern-specific connectivity@14,15#, while otherwise imple-
menting the extended Hebbian learning rule to be introdu
below. A similar strategy based on a connection-prun
scheme adapted to the pattern domain has been employ
©2003 The American Physical Society01-1
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tame the combinatoric explosion of parameters in high
order probabilistic perceptrons@16#.

Of course, if the entire array of coefficientsci j 1 j 2••• j n
is

specified at the outset, the explosive combinatoric optim
tion problem becomes moot. In this note we shall focus
the fully connected network in an important special case
‘‘one-shot’’ learning in which it is feasible and straightfo
ward to evaluate the general termCn of the series~2!. In fact,
by exploiting standard group-theoretic results, we are a
ally able to sum this series in the limit of asymptotica
large connectivity (Ki→`, implying an infinitely large net-
work!.

We consider the familiar task of storage and recall op
random patternsSm5$S1

m ,S2
m , . . . ,S2

N% in the firing activities
of the neuronal units, where againSjP$21,1%. As is well
known @4,7,8#, such patterns can be faithfully stored as fix
points of the dynamics~1! of the network model to a capac
ity p5O(NK) ~with K5miniKi), if the weight parameters o
the stimulus expression~2! are chosen according to an e
tension of the classical Hebbian learning rule to the prese
of interactions of all orders up toKi :

ci j 1 j 2••• j n
5 (

m51

p

Si
mSj 1

m Sj 2

m
•••Sj n

m , n51, . . . ,Ki . ~4!

The efficacy of memory storage is commonly analyzed
terms of the overlaps

mm~ t !5(
j

Sj
ms j~ t ! ~5!

of the current network configuration

$s1~ t !,s2~ t !, . . . ,sN~ t !%

with a given patternSm. When a relative-entropy cost func
tion is adopted@17#, the weight specification~4! can be
shown to be optimal among the class of simple local learn
rules ~where ‘‘local’’ implies that changes of synapti
strength depend only on the states of the neurons interac
at the given synapse!.

To evaluate the generic term~3! in the stimulus expansion
~2! under the extended Hebbian ansatz~4!, it is convenient to
define ‘‘generalized’’ overlaps

ma
m~ t !5(

j
@Sj

ms j~ t !#a ~6!

of the current network configuration with one of the pr
scribed patterns, wherea is a positive integer. SinceSj

2

5s j
251, the quantityma

m(T) reduces toKi for a even and
to the ordinary overlap~5! for a odd. Proceeding with direc
evaluation of the right-hand side of Eq.~3! for n51 –4, we
establish the pattern of behavior for the higher orders:

C15 (
m51

p

Si
m@m1

m#, ~7!
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C25 (
m51

p

Si
m 1

2!
@~m1

m!22m2
m#, ~8!

C35 (
m51

p

Si
m 1

3!
@~m1

m!323m1
mm2

m12m3
m#, ~9!

and

C45 (
m51

p

Si
m 1

4!
@~m1

m!426~m1
m!2m2

m18m1
mm3

m

13~m2
m!226m4

m#. ~10!

It is seen that the generic termCn is built as a sum over al
patterns of individual terms of the form

Si
m 1

n!
g~a1 , . . . ,an!)

l 51

n

~ml
m!a l, ~11!

where g(a1 , . . . ,an) is a statistical weight factor and th
generalized overlapsml

m enter with positive integral power
satisfying the partitioning condition

(
l 51

n

la l5n. ~12!

The statistical factor is found to obey the sum rules

(
(a)

g~a1 , . . . ,an!50 and (
(a)

ug~a1 , . . . ,an!u5n!,

~13!

and can be constructed as

g~a1 , . . . ,an!5n! Y F)
l 51

n

~21!a l11~ l a l !a l ! G . ~14!

Thus, for arbitraryn, the contributionCn can be written
explicitly as

Cn5 (
m51

p

Si
mP̄n~m1

m , . . . ,mn
m!, ~15!

where

P̄n~m1 , . . . ,mn!5
1

n!((a)
)
l 51

n

g~a1 , . . . ,an!ml
a l .

~16!

The sum overa in definition ~16! extends only over those
n-dimensional vectorsa5(a1 , . . . ,an) whose components
satisfy constraint~12!. The quantity P̄n(m1 , . . . ,mn) is
identified as a generalized Polya` polynomial@18# of the sym-
metric groupSn , with the signs (21)a l11 of the correspond-
ing cyclic permutations incorporated.

For givenn, the total number of solutionsP(n) of condi-
tion ~12! can be determined by induction from the recurren
relation @19#

P~n!5
1

n (
q51

n

r~q!P~n2q!, ~17!
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FIG. 1. All possible fermion
cluster diagrams for n
52,3, . . . ,6, in theabsence of dy-
namical correlations.
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in which the divisor functionr( l ) is the sum of the first
powers of the divisors ofq. For largen, P(n) behaves as-
ymptotically as

P~n!5
1

4nA3
epA2n/3. ~18!

Importantly, the generating function of the Polya` polyno-
mials may be employed to calculate the sum overn of all
individual contributionsCn in the limit of large connectivity
Ki , which is equivalent to the thermodynamic limit. We o
tain thereby a closed formula for the net internal stimu
defined in Eq.~2!,

hi5 (
n50

`

Cn5 (
m51

p

Si
mexpF(

l 51

`
~21! l 11

l
ml

mG ~Ki→`!.

~19!

In contrast to this formal result, practical neural-network a
plications often work with a single fixed order or with a fe
low orders adapted to the complexity of the problem~see, for
example, Ref.@20#!.

Combinatoric group-theoretical considerations reveal
interesting one-to-one correspondence between thenth-order
contributionCn to the stimulus sum~2! and the sum of pla-
nar n-particle cluster diagrams for noninteracting partic
obeying Fermi statistics. Each fermion cluster diagram
uniquely defined by ann-dimensional vector (a1 , . . . ,an)
satisfying relation~12! and specifying a partitioning of the
n-particle cluster into subclusters correlated by exchan
namely, intoa1 1-cycles,a2 2-cycles, . . . , an n-cycles. The
statistical weight factorg(a1 , . . . ,an) is the number of
ways in whichn particles can be assigned toa l exchange
clusters of sizel, with l running from 1 ton. Figure 1 shows
all possible cluster diagrams up to ordern56. Each contri-
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bution diagram consists ofn filled dots and the associate
exchange lines. Reflecting the Fermi~or Bose! symmetry of
the wave function, the exchange lines only occur in clos
loops: the particles belonging to a given exchange clu
appear as nodes in a continuous circuit of lines that rep
sents a transposition or cyclic permutation. Cluster diagra
of this type ~though with additional lines representing d
namical correlations! are used in the description of noninte
acting fermions or bosons in the correlated wave-funct
and correlated density-matrix formalisms@21,22#.

A large number of computer experiments@23# have estab-
lished the following behavior of higher-order networks wh
applied to problems in pattern recognition. When the patte
to be recognized are structured rather than random, the
work dynamics usually converges to the pattern withstruc-
tural similarity closest to the initial pattern, rather than to~or
to a state very near! the pattern having largest overlap wit
the initial state. This behavior contrasts with that of firs
order networks having only binary synapses@24#; relative to
these conventional systems, higher-order networks dem
strate a greatly enhanced capability for structural discrimi
tion of arbitrarily complex patterns. Moreover, when fun
tioning in the regime of dilute pattern storage~i.e., far from
saturation, thusp;N,,NK, K>2), the basins of attrac
tion of the memorized patterns are dramatically enlarg
Finally, it is to be emphasized that in the model we ha
considered, the combinatoric explosion of weight coe
cients is obviated, since the network only needs to know
overlaps of the present state with all the patterns to be
bedded.

In closing, it may be remarked that support-vector m
chines@25# share with the above construction the salient fe
ture of avoiding explicit evaluation of higher-order terms.
the feedforward architecture characterizing support-vec
machines, a hidden layer of suitably chosen inner-prod
kernels is introduced to establish the optimal hyperplane
feature space without having to address the feature sp
explicitly @26#. In particular, polynomial kernels will auto
matically incorporate the effects of multiplicative intera
1-3
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tions to the specified order. Beyond this commonality of
sult, deeper relations between the two constructions are
transparent. We note, in particular, that the Hebbian choic
weights is quite special, and in general implies all-to-all co
nections between the neuronal units.
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