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Higher-order neural networks, Polya polynomials, and Fermi cluster diagrams
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The problem of controlling higher-order interactions in neural networks is addressed with techniques com-
monly applied in the cluster analysis of quantum many-particle systems. For multineuron synaptic weights
chosen according to a straightforward extension of the standard Hebbian learning rule, we show that higher-
order contributions to the stimulus felt by a given neuron can be readily evaluated viasRaigzbinatoric
group-theoretical approach or equivalently by exploiting a precise formal analogy with fermion diagrammatics.
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In attempting to unravel the mechanisms of information
processing and attendant adaptive behavior in neurobiologi-Ni (1) =Cio(t) + 2 ij (Do ++ > cjj i (Do (Do, (1)
cal systems, considerable attention is currently being di- I halz
rected to nonlinear processing in dendritic trees and to the

computational power that can be gained from multiplicative e +J. < ;“q CijljZ"-jKi(t)o-jl(t)

or higher-order interactions between neurpbg]. This fo- v A

cus is supported by a large body of theoretical work demon- X crjz(t)- . -cij_(t)

strating enhanced performance in artificial neural networks '

involving such higher-order or multineuron interactions, as =Co(t)+Cq(t) +Cx(t)+ - - - +CKi(t), (2

applied to a variety of information-processing tasks, most

notably memory storage, and recall Rdf3-13. Introduc-  where the sums include only tho& neurons from which
tion of higher-order couplings is accompanied, however, byneuroni receives inputs. The first term represents any exter-
the threat of a combinatoric explosion that may strongly in-nal input to neuron (reduced by its thresholdwhile the
hibit analysis, evaluation, and optimization. In this note wesecond term is the usual one representing binary interactions,
expose some simple techniques based on group-theoreticsimple linear sum of states of input neurons weighted by
symmetry arguments that serve, in some cases, to reduce tRgnaptic strengths;; . The higher-order terms in the expan-
severity of these problems and give access to the advantagsien, forn=2, represent “multiplicative” interactions in that

of higher-order networks for problem domains involving they are linear combinations of thoductsof two or more
complex correlations. Our study is guided by interesting parinput-neuron states. One also speaks of a “sum-of-products”
allels with the diagrammatic analysis of fermion clusters inform for such interactions.

many-body physics. We observe that the genenath-order contribution

We consider the following simple but standard model of a
h?gher—order neural network. The network consists Nof c.= > Ci i 0} 00, 3)
binary-output hard-threshold unitenodel neuronsi whose j1<ip.-<j, vz nl1i2 n

state variablesr; take the value+1 if the unit is active

(“firing” ) and —1 if the unit is inactive(“not firing” ). representing the irreducible interaction nfneurons with

Model neuron receives inputs from exactly; other units of  neuroni, introduces {:i)zKi!/n!(Ki—n)! weight param-

the network, with self-interactions excluded so that K, eters. Accordingly, specification of the net stimul@ re-

<N-1. A given neuron updates its state on a discrete timguires Xi parameters. The exponential explosion of param-

grid according to the deterministic threshold rule eters with increasing connectivityk; has deterred
widespread application of higher-order networks, in spite of
their theoretical advantages.

oi(t+1)=sgrihi(t)], i=1,... N. 1) Indeed, complete optimization of a network having all

possible combinations of higher-order terms is patently im-
practical for sizable values df; typically needed in real-

Here h;(t) is the net stimulus felt by the neuron at tihe  world applications. However, a restricted optimization prob-

coming from internal and external inputs but reduced by dem has been attacked by retaining only a strongly reduced

threshold parameter. For our purposes it is immateriapattern-specific connectivityl4,15, while otherwise imple-

whether sequential or parallel updating is imposed. The germenting the extended Hebbian learning rule to be introduced

eral higher-order synaptic structure of the network model idoelow. A similar strategy based on a connection-pruning

expressed in the assumed form scheme adapted to the pattern domain has been employed to
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tame the combinatoric explosion of parameters in higher- P

order probabilistic perceptrod6]. Co= > S{‘% (mf)2—m41], 8
Of course, if the entire array of coefficientg ;...; is p=1 '

specified at the outset, the explosive combinatoric optimiza- p 1

tion problem becomes moot. In this note we shall focus on Cs= 2, S{‘—'[(mf)3—3m’l‘m’2‘+ 2m4], (9)

the fully connected network in an important special case of p=1 3!

“one-shot” learning in which it is feasible and straightfor-

ward to evaluate the general tefy of the serie€2). In fact,

by exploiting standard group-theoretic results, we are actu- P 1 4 5

ally able to sum this series in the limit of asymptotically Cy= 21 St gy LmE)" = 6(mg)“m; +8mymyg

large connectivity K;— o, implying an infinitely large net- - '

work). +3(m4)2—6m4]. (10)
We consider the familiar task of storage and recalpof ] ) )

random patterns*={S, ¥, ... S} in the firing activities It is seen that the generic ter@, is built as a sum over all

of the neuronal units, where aga8je{—1,1}. As is well patterns of individual terms of the form

known|[4,7,8], such patterns can be faithfully stored as fixed 1 n

points of the dynamic§l) of the network model to a capac- S{‘—I y(aq, ... ,an)H (mf“)e, (12)
ity p=0O(NK) (with K=minK;), if the weight parameters of n: =1

the stimulus expressiof2) are chosen according to an ex- \yhere y(ay, ... a,) is a statistical weight factor and the
ten_sion of.the classical Hebbian learning rule to the Presenceneralized overlapsi* enter with positive integral powers
of interactions of all orders up tK; : satisfying the partitioning condition

p n
Ciii=2 SESHESE.. S n=1,...K. (4 > ley=n. (12)
Jal2-In =1 in =]

11 0

. . . The statistical factor is found to obey the sum rules
The efficacy of memory storage is commonly analyzed in
terms of the overlaps

% y(aqg, ...,ay)=0 and % [v(aq, ... ap|=n!,

M= Soy(t) (5) (13
! and can be constructed as

of the current network configuration n
V(al,---,an)=n!/ [T (—n=*2aeyat|. 14
{o1(t),oa(t), ... on(t)} =
. . ) Thus, for arbitraryn, the contributionC,, can be written
with a given patterr&‘. When a relative-entropy cost func- explicitly as
tion is adopted[17], the weight specificatior{4) can be

shown to be optimal among the class of simple local learning P —
rules (where “local” implies that changes of synaptic Ch= 21 SEPa(my’, ... mp), (15
strength depend only on the states of the neurons interacting a
at the given synapge where
To evaluate the generic ter(8) in the stimulus expansion \
(2) under the extended Hebbian ans@ it is convenient to — 1 o
define “generalized” overlaps Po(my, ... my) = n & |1:[1 Yy, .. an)m.
(16)
me() =2, [Sfoj(t)]” (6)  The sum overe in definition (16) extends only over those
! n-dimensional vectorsr= (a4, ... ,a,) whose components

_satisfy constraint(12). The quantity P,(m;, ...,m,) is
identified as a generalized Polgalynomial[ 18] of the sym-
metric groupsS,, with the signs ¢ 1) "1 of the correspond-
ing cyclic permutations incorporated.

For givenn, the total number of solution8(n) of condi-
tion (12) can be determined by induction from the recurrence
relation[19]

of the current network configuration with one of the pre
scribed patterns, where is a positive integer. SincS]-2
=012=1, the quantitym’(T) reduces tK; for « even and
to the ordinary overlags) for « odd. Proceeding with direct
evaluation of the right-hand side of E) for n=1-4, we
establish the pattern of behavior for the higher orders:

p 1 n
Ci= 2 ], (7 P(n)=— > p(q)P(n-q), (17)

g=1
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FIG. 1. All possible fermion
cluster diagrams for n
=23, ...,6, inthebsence of dy-
namical correlations.

el

in which the divisor functionp(l) is the sum of the first
powers of the divisors of|. For largen, P(n) behaves as-
ymptotically as

1 —
p(n) — _ewv’ZnIS_

18
4n\/§ ()

Importantly, the generating function of the Polyalyno-
mials may be employed to calculate the sum onesf all
individual contributionsC,, in the limit of large connectivity

bution diagram consists of filled dots and the associated
exchange lines. Reflecting the Fertor Bos¢ symmetry of
the wave function, the exchange lines only occur in closed
loops: the particles belonging to a given exchange cluster
appear as nodes in a continuous circuit of lines that repre-
sents a transposition or cyclic permutation. Cluster diagrams
of this type (though with additional lines representing dy-
namical correlationsare used in the description of noninter-
acting fermions or bosons in the correlated wave-function
and correlated density-matrix formalisiiial,22.

A large number of computer experimef&8] have estab-
lished the following behavior of higher-order networks when

K;, which is equivalent to the thermodynamic limit. We ob- applied to problems in pattern recognition. When the patterns
tain thereby a closed formula for the net internal stimulusto be recognized are structured rather than random, the net-

defined in Eq.(2),

(Kj—).
(19

work dynamics usually converges to the pattern veithuc-

tural similarity closest to the initial pattern, rather than(¢o

to a state very neathe pattern having largest overlap with
the initial state. This behavior contrasts with that of first-
order networks having only binary synap$2d]; relative to
these conventional systems, higher-order networks demon-
strate a greatly enhanced capability for structural discrimina-
tion of arbitrarily complex patterns. Moreover, when func-

In contrast to this formal result, practical neural-network ap-tioning in the regime of dilute pattern storagee., far from
plications often work with a single fixed order or with a few saturation, thugp~N<<NK, K=2), the basins of attrac-

low orders adapted to the complexity of the probleree, for
example, Ref[20]).

tion of the memorized patterns are dramatically enlarged.
Finally, it is to be emphasized that in the model we have

Combinatoric group-theoretical considerations reveal arconsidered, the combinatoric explosion of weight coeffi-

interesting one-to-one correspondence betweentimerder
contributionC,, to the stimulus sunf2) and the sum of pla-

cients is obviated, since the network only needs to know the
overlaps of the present state with all the patterns to be em-

nar n-particle cluster diagrams for noninteracting particlesbedded.

obeying Fermi statistics. Each fermion cluster diagram is

uniquely defined by am-dimensional vector ¢, . .. ,ap)

In closing, it may be remarked that support-vector ma-
chines[25] share with the above construction the salient fea-

satisfying relation(12) and specifying a partitioning of the ture of avoiding explicit evaluation of higher-order terms. In
n-particle cluster into subclusters correlated by exchangethe feedforward architecture characterizing support-vector

namely, intoa; 1-cycles,a, 2-cycles,. . ., a, n-cycles. The
statistical weight factory(aq, ... ,a,) is the number of
ways in whichn particles can be assigned tg exchange
clusters of size, with | running from 1 ton. Figure 1 shows
all possible cluster diagrams up to order 6. Each contri-

machines, a hidden layer of suitably chosen inner-product
kernels is introduced to establish the optimal hyperplane in
feature space without having to address the feature space
explicitly [26]. In particular, polynomial kernels will auto-
matically incorporate the effects of multiplicative interac-
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tions to the specified order. Beyond this commonality of re- This paper is a contribution to the ZiF Research Year on
sult, deeper relations between the two constructions are ndihe Sciences of Complexity: From Mathematics to Complex-
transparent. We note, in particular, that the Hebbian choice afy to a Sustainable World. The research was supported in
weights is quite special, and in general implies all-to-all con-part by the U.S. National Science Foundation under Grant
nections between the neuronal units. Nos. PHY-9900713 and PHY-0140316.
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